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Abstract

Human brain tumors are a group of tumors that primarily originate
from the central nervous system. These tumors vary in their
etiology, histology, biology, prognosis and treatment. The overall
incident rate of brain tumors are reported to be lower compared
to other human tumor types. However, it results in a
disproportionately high mortality rate due to cancers. The human
retinoblastoma gene (RB1) is the first human tumor suppressor
(TS) gene to be identified and it is one of the most widely studied
genes in a variety of human cancers. Data from these studies
showed that it is one of the most important cell cycle regulatory
genes. Inactivation of RB1 gene has been reported in various
human tumors including brain tumors. Data from the Western
population indicates that the TS function of this gene is lost due
to deletions, mutations or absence of its protein product in a
considerable number of human brain tumor cases. To the
contrary, data from the brain tumor tissues of Indian population
indicates that the inactivation of RB1 gene pathway could occur
though a different mechanism. This could also explain the rarity
of retinoblastomas, one of the childhood tumors, in Indian
population. In this review we have discussed the possible role
RB1 gene in the development of human brain tumors.

Key words: Brain tumors, Cell cycle, pRb, RB1, Tumor suppressor
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Introduction

Human brain tumors account for only 2% of all human cancers
but they have a disproportionately high mortality rate compared
to the other tumors. The human brain tumors are difficult to
manage and treat. The overall survival of brain tumor patients is
less than two years from the time of diagnosis. Inspite of
advancement in diagnostic and treatment procedures the survival
rate has not changed over the past four decades. It is now clear
that most cancers arise due to a complex interplay between various
oncogenes and tumor suppressor genes. The human
retinoblastoma gene (RB1) is an important tumor suppressor gene.
The available literature indicates the importance on RB1 gene in
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neuronal development and differentiation. In this review we have
evaluated possible role of RB1 gene in human brain development
and provide current status in these subjects.

Human Brain Tumors

Human brain tumors are a collection of intracranial tumors formed
due to abnormal or uncontrolled cell division where each tumor
type has its own etiology, biology, prognosis and treatment (1).
Brain tumors commonly arise from neurons, glial cells (astrocytes,
oligodendrocytes and ependymal cells), lymphatic tissue, blood
vessels, cranial nerves (myelin-producing schwann cells), meninges,
skull, pituitary and pineal gland (2).

Classification of brain tumors

The current WHO (World Health Organisation) classification of
brain tumor consists of more than 120 intra cranial tumors
classified under 7 major categories which includes tumors of
neuroepithelial tissue, peripheral nerves, meninges, lymphomas
and hemopoietic neoplasms, germ cell tumors, tumors of the
sellar region and metastatic tumors (3,4).

Primary intra cranial tumors

Primary human intra cranial tumors are true brain tumors, arising
exclusively from cells normally present in the brain. Gliomas
originate from glial cells like astrocytes (astrocytomas),
oligodendrocytes (oligodendrogliomas), or ependymal cells
{(ependymoma). Some tumors consist of cells of astrocytic and
oligodendroglial origin and these are known as mixed gliomas or
oligoastrocytomas. Additionally, (a) mixed glio-neuronal tumors,
tumors displaying a neuronal, as well as a glial component, e.g.
gangliogliomas, disembryoplastic neuroepithelial tumors and (b)
tumors originating from neuronal cells e.g. gangliocytoma, central
gangliocytoma also exist (5).

From the histological perspective, astrocytomas, oligondedrogli-
omas, and oligoastrocytomas may be benign or malignant.
Glioblastoma multiforme (GBMs) represents the most aggressive
form of malignant glioma (2,6). Other primary brain tumors
include primitive neuroectodermal tumors (PNETs) such as
medulloblastoma, medulloepithelioma, neuroblastoma,
retinoblastoma and ependymoblastoma, tumors of the pineal
parenchyma (e.g. pineocytoma, pineoblastoma), ependymal cell
tumors, choroid plexus tumors, neuroepithelial tumors of uncertain
origin (2.g. gliomatosis cerebri, astroblastoma) etc.

Another type of primary intra cranial tumor is primary cerebral
lymphoma, also known as primary CNS lymphoma, which is a
type of non-Hodgkin's lymphoma that is much more prevalent in
those with severe immuno-suppression disorder such as AIDS.

Secondary intra cranial tumors

Secondary brain tumors originate from malignant tumors located
primarily in other organs. Their incidence is higher than that of
primary brain tumors (2). The most frequent types of metastatic
brain tumors originate from primary tumors of lung, breast, skin,
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kidney, and colon and these are known to occur through the
blood stream (7).

Incidence of human brain tumors

Gliomas represent the largest proportion of primary brain tumors,
accounting for approximately 50% of all brain tumors.
Meningiomas are the second most common brain tumors
comprising approximately 20 to 25%, followed by pituitary
adenomas, nerve sheath tumors and primary CNS lymphoma
each of which represent less than 10% of all primary brain tumors
(2,5,8).

The overall incidence rate for primary brain and central nervous
system tumors is reported to be 14.8 for every 100,000 individuals
each year. The overall incidence rate is 4.3 in 100,000 each year
for children new born to 19 years of age, 4.4 for 100,000
population each year for children less than 15 years and 19.0 for
100,000 each year for adults 20 years or older (9).

Age and gender distribution

The overall incidence of all primary malignant brain tumors
combined is higher among males, which are known to be 8.7 for
100,000 population each year, compared to females which is
6.2 for every 100,000 population each year. The annual incidence
of all primary non-malignant brain tumors combined is higher
among females, that is, 8.8 for every 100,000 population each
year compared to males, which is, 5.8 for 100,000 population
each year (9).

Distribution of brain tumors shows that the incidence is highest
among children. In addition, the tumor incidence is known to
increase exponentially from early twenties until the age of 70
years then is reported to decline with increasing age (2).

Survival

Brain tumors accounts for approximately 2% of all human cancers
but it is the fifth leading cause of death due to cancer. The five-
year relative survival rate following diagnosis of a primary
malignant brain tumor, including lymphoma, tumors of the
pituitary and pineal gland, and olfactory tumors of the nasal
cavity is 28.1% for males and 30.5% for females. The five-year
relative survival rates following diagnosis of a primary malignant
brain tumor for patients of 9 years and below is reported to be
64.8%, age 20 to 44 years is 47.9%, age 45 to 64 years is 23.1%,
age 65 to 74 years is 6.6% and 75 and above is 4.8%. The
estimated five and ten-year relative survival rates for malignant
brain tumors are 28% and 24% respectively. (9,10).

Causes

Apart from vinyl chloride exposure or ionizing radiation, there
are no known environmental factors associated with brain tumors.
Irradiation of the cranium even at the low doses can increase the
incidence of meningiomas by a factor of 10 and the incidence of
glial tumors by a factor of 3 to 7 with the latency period of 10
years to 20 years after exposure (1). Mutations and deletions of
tumor suppressor genes are documented in many human brain
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tumor types. Patients with various inherited diseases, such as
Von Hippel-Lindau syndrome, multiple endocrine neoplasia, and
neurofibromatosis type 2 (NF2) are at higher risk of developing
brain tumors (11). Recently, use of cellular phones and hair dye,
living close to high tension wires, head trauma and dietry exposure
to N-nitrosourea or other nutritional factors have been reported
to increase the risk of brain tumors however, these results are not
conclusive (12-14).

Symptoms

Symptoms associated with brain tumors depend on the type of
tumor, tumor size and location. Onset of symptom during the
tumor progression correlates in many cases with the tumor type.
Slow-growing benign tumors have late symptom onset and fast-
growing malignant tumors have early onset of symptoms. Many
low-grade tumors can remain asymptomatic for several years.
Onset of epilepsy is a frequent reason for seeking medical attention
in brain tumor cases (2,15).

Large tumors or tumors with extensive perifocal swelling and
edema inevitably lead to increased intracranial pressure (IICP).
IICP translates clinically into headaches, nausea and vomiting,
altered state of consciousness such as somnolence and coma.
However, even small tumors obstructing the passage of
cerebrospinal fluid (CSF) may cause early signs of increased
intracranial pressure (2,15).

Depending on the tumor location and the damage it has caused
any type of focal neurologic symptoms such as cognitive and
behavioral impairment, personality changes, hemiparesis,
hypesthesia, aphasia, ataxia, visual field impairment, facial
paralysis, double vision, tremor etc may occur. These symptoms
are however not specific for brain tumors as they may also be
caused by a variety of neurologic conditions such as stroke and
traumatic brain injury. However, location of the tumors generally
affects the normal functioning of motor, sensory and visual systems
(15). A bilateral temporal visual field defect, bitemporal
hemianopia arise due to compression of the optic chiasm. This
often is associated with the endocrine dysfunction like hypo or
hyperpituitarism and hyperprolactinemia due to pituitary tumor
2).

Diagnosis

Imaging plays a central role in the diagnosis of brain tumors.
Non-invasive, high-resolution modalities, such as computed
tomography (CT) (Figure 1) and magnetic resonance imaging
(MRI) are used frequently to diagnose brain tumors (16).
Electrophysiological procedures, such as electroencephalography
(EEG) play a marginal role in the diagnosis of brain tumors.
Histological examination is essential for determining the
appropriate diagnosis, treatment and prognosis.

Histopathology

Diffused astrocytomas show mild atypia particularly nuclear
pleomorphism and hyper chromassia (17). The cells of fibrillary
astrocytomas may appear as bare nuclei and they show astrocytic
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Figure 1: CT image of a 40 year old female with meningothelial
meningioma grade III. The arrow indicates the tumor of size 18/13
mm at the temporal lobe. R- Right; L- Left; A- Anterior; P- Posterior

Image courtesy: Department of Neuroimaging and Interventional
Radiology, NIMHANS

differentiation and exhibit prominent fibrillary stretch of
eosinophilic cytoplasm or a gemistocytic appearance (2,3).

Cytological and nuclear pleomorphism, increased nuclear:
cytoplasm ratio, multi lobules of nuclei and greater range of cell
sizes may be apparent in the anaplastic astrocytomas. Enhanced
mitotic activity and neovascularisation distinguish the anaplastic
astrocytomas from other astrocytomas. No necrosis is found in
anaplastic astrocytomas (Figure 2). Necrosis and a florid
microvascular proliferation is the key feature of GBMs. Cellular
pleomorphism is more extreme in GBMs than the anaplastic
astrocytomas. GBMs often show increased cellularity surrounding
a region of necrosis called a ‘pseudopalisading’. Ischaemic
necrosis also had been found in GBMs (3).

Figure 2: Hematoxylin and Eosin stained section of an anaplastic
astrocytoma grade III showing nuclear pleomorphism and increased
cellularity.
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Oligodendrogliomas are best recognized by the classic honeycomb
appearance of uniform collections of cells with round nuclei and
a distinctive perinuclear halo that occurs as an artifact of tissue
handling. These tumor cells occasionally adopt slightly elongated
structure but the nucleus retains the characteristics uniformly (3).
Gangliogliomas consist of disorganized ganglion cells set against
a neuropil-like background on a lacy fibrillary background
containing a few reactive astrocytes.

Meningioma exhibits a wide rage of histologic pattern (Figure 3)
furthermore a single meningioma can also show a combination
of hitological pattern. Menigothelial meningioma consists of sheets
of lobule of oval cells that form rudimentary menigothelial whorls
in a few places. Fibroblastic meningiomas consist of spindle
shaped cells associated with variable amount of perinuclear
collagen. Menigothelial and fibrous areas are combined in
transitional meningioma, which contain widespread whorls and
scattered psammoma bodies (3).

Figure 3: Hematoxylin and Eosin stained section of meningioma
grade IIl showing nuclear pleomorphism, numerous mitoses and
necrosis.

Molecular genetic alterations in brain tumors

In general, cancers develop due to series of discrete genetic and
molecular alterations that lead to stepwise accumulation of
abnormalities in the fundamental cell regulatory pathways (18).
Many of these defects act on growth factor signaling pathways
that tightly regulate various cellular functions such as cell division,
cell survival, differentiation, cell-cell and cell-matrix interactions
and angiogenesis. Under normal circumstances these growth
factors control tissue growth, differentiation and repair in response
to injury. Deregulation of these pathways by either direct or indirect
involvement of proto-oncogenes and/or tumor suppressor genes
result in oncogenic transformation, uncontrolled cell proliferation
and subsequently cancer.

Mutational activation or overexpression of proto-oncogenes is
now recognized to play a fundamental role in initiation and
progression of many human brain tumor types (18-20).
Conversely, tumor suppressor (TS) genes code for proteins that
down regulate oncogenic pathway under normal circumstances.
Loss of function or inactivation of tumor suppressor genes is
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equally important to proto-oncogene activation during
tumorigenesis. The interplay between the TS genes and proto-
oncogenes during cell cycle and differentiation is a highly complex
process (20).

Overexpression of cyclin dependent kinases (cdks) and loss of
expression of cyclin-dependent kinase inhibitors play important
role during malignant progression of many human tumors
including the gliomas (19). There is increasing evidence that
inactivation of cell cycle regulatory genes is a frequent event in
human astrocytic brain tumors. Homozygous deletion of p16
(CDKN2/ MTS 1) gene has been reported in 30 to 60% of
glioblastomas. Cyclin dependent kinase 4 (CDK4) amplification
is identified in 11 to 15% of glioblastomas while loss of
retinoblastoma gene (RB1) locus (LOH) is reported in many
glioblastomas. Loss of pRb expression is detected by western
blot in 22% of malignant gliomas and by immunohistochemistry
in one third of high-grade astrocytomas with LOH on chromosome
13q. Furthermore, RB1 gene mutations have been found in 12 to
20% glioblastomas (21).

Loss of p53 function often occurs early in the course of glioma
development (22-24). Possibly the most frequently mutated tumor
suppressor gene in human cancers, p53 normally plays a
fundamental role in preventing DNA injury and subsequent
oncogenesis through two major pathways: (a) inhibition of the
cell cycle and {b) induction of apoptosis (25). Expression of
pl4ARF is regulated by the E2F1 transcription factor that is
activated under conditions of uncontrolled cell proliferation.
p14ARF reverses Mdm2-mediated p53 inactivation and inhibits
Mdm2-mediated p53 degradation (26,27). Thus, p14ARF limits
uncontrolled cell cycle progression even in presence of Mdm2
expression. Genetic mutations leading to excessive Mdm2 activity
and loss of p14ARF functions are reported to be common in
human brain tumors (28).

Treatment and prognosis

Treatment involves combination of surgery, radiationtherapy and
chemotherapy. Multiple metastatic tumors are generally treated
with radiationtherapy and chemotherapy. Survival rates in primary
brain tumors depend on the type of tumor, age, functional status
of the patient, extent of surgical tumor removal, just to mention
a few. Patients with benign gliomas may survive for many years
while survival in most cases of GBM, that is, the most malignant
form, is limited to a few months after diagnosis (2). In more
difficult cases, stereotactic radiotherapy (gamma knife) remains
a viable option. Assortments of other treatments are commonly
used when a brain tumor fails to respond to surgery,
radiationtherapy or chemotherapy. These involve the use of
angiogenesis inhibitors, differentiating agents, immunotherapy,
and gene therapy (2).

Recent advances in nanotechnology are being used for developing
new, efficient magnetic nano-vectors for brain tumor therapy
{29,30). There are reports of rats with cancer that received
traditional Photofrin therapy surviving 13 days, while rats treated
with the Photofrin/nanoparticle method surviving longer, that is,
average of 33 days. In this study 40 percent of the rats remained
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disease-free six months after treatment (30). Thus, use of small
biological particles such as Photofrin/nanoparticles could provide
an opportunity to successfully diagnose and treat brain tumors
and this could also preserve healthy brain tissues and more
effectively destroy tumor cells only.

Human Retinoblastoma Gene (RB1)

Discovery of tumor suppresser (TS) genes

Presence of tumor suppresser (TS) genes was identified using cell
fusion studies. In 1957 Harris and coworkers fused tumor cells
with normal fibroblast, lymphocyte and keratinocytes and found
that the genetic factor present in the normal cells suppressed
malignant property of the tumor cells (31). In 1987 Weissman et
al introduced a single chromosome into the tumor cells by
microcell fusion-mediated transfer, which also inhibited the
tumorigenecity (32). Results from these experiments lead to the
discovery of existence of tumor suppresser genes.

In 1971 Knudson proposed that sporadic retinoblastomas could
result from as few as two mutational events occurring in both
alleles of the same gene and in familial retinoblastomas one
defective allele is inherited from the parent and the second ‘hit’
could occur at the somatic level (33). Genetic analysis of
retinoblastomas revealed that the chromosome region 13q14 is
frequently lost in both hereditary and sporadic form of these
tumors (33). Later many groups independently isolated, cloned
and characterized the RB1 gene from this locus. Detailed studies
on the RB1 gene identified it as a candidate for the retinoblastoma
susceptibility and these studies marked the beginning of new era
of cancer research (34,35).

Structure of RB1 gene

RB1 gene spans approximately 200 kb and is localized on human
chromosome 13q14 . It has 27 exons ranged in length from 31
{exon 24) to 1889 nucleotides (exon 27) (34-36). The sizes of the
introns range from 80 base pair (intron 15) to approximately 17
kb (intron 17). Exon 1 contains first methionine and &’
untranslated sequences. The open reading frame stops 140 bases
from the 5’ end. Two potential initiation codons exist in the open
reading frame, one at 139 and another at 145. The promoter
region lies between +13 to +83 (34) and it contains no TATA or
CCAAT box motifs. The 5’ region of RB1 gene is rich in its GC
content (34).

The retinoblastoma protein (pRb)

The RB1 gene encodes a relatively stable nucleophosphoprotein,
pRb, which has 928 amino acids and a molecular weight of 110
kDa (37). pRb has a half life of more than 8 hours (38). The level
of pRb is relatively constant however its function is modulated by
posttranslational modifications of the 16 potential phosphorylation
sites (39-41).

Localization of pRb within the nucleus

High-resolution deconvolution microscopic studies have revealed
that during G1 and S phases, the three RB family of proteins
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(RB1, RB2/p130 and p107) are found in the perinucleolar foci
(42). pRb is known to be associated with the nuclear matrix only
during G, and G1 phases (43).

RB pocket family proteins

Similar to RB1, the RB2/p130 and p107 are members of RB
family. Together these are termed as pRb family, also known as
pocket family protein because of their structural similarities,
particularly at the A and B domains. p107 and p130 are closely
related to each other and have 47% identity whereas 21% identity
with RB1 at the amino acid level. The similarities between them
are more at the A and B domains i.e. small pocket domain with
30 to 40% homology. The N and C domains are not conserved.
The A and the B domains are necessary for the functions of
family of pocket proteins (44).

Function pRb protein during cell cycle

Retinoblastoma protein {pRb) acts as a central regulatory
component of the cell cycle machinery and it regulates cell division
at the G1/S checkpoint (45). pRb acts as a check point, that is
controlled during the transition of cell cycle from early G1 phase
to late G1/S phase (46,47). Whenever pRb gets
hyperphosphorylated it becomes inactive and releases E2F free
to activate its target genes. The E2F family of proteins has the
ability to bind to the promoter region of many genes that are
necessary for cell cycle progression and they are repressed by
pRb once the cell cycle is completed. Progression of cell cycle,
transition of cells from G1 to S phase in particular, requires
phosphorylation of pRb and it is carried out by cyclin dependent
kinases (CDKs) in association with the corresponding cyclins. pRb
becomes active through hypophosphorylation once the cell exits
from M phase which is again able to bind to E2F and control cell
division at G1/S checkpoint (46,47).

Function of pRb in other phases of cell cycle

Studies showing over expression of pRb in S phase and arrested
cells at G2 phase suggest a role for pRb in G2/M progression
(48). Rb/E2F mediated G1 phase regulation may also coordinate
the mechanism that controls the G2/M transition {49). When
cells have entered S phase Rb/E2F complex repress the transcription
of cyclin A, which is involved in mitosis. pRb is also known to be
involved in mitosis exit (50).

Phosphorylation site-mutated pRb (PSM-Rb) not only has the
capability of arresting cells at G1 phase, but also is able to inhibit
S phase progression. Such an inhibitory effect cannot be bypassed
through overexpression of G1 cyclins such as cyclin E, suggesting
a distinct role of pRb in S phase (51). These studies suggest that
pRb is involved in the progression of the entire cell cycle.

pRb in transcriptional repression

pRb is known to repress transcription of a set of genes that are
necessary for the S phase, thus preventing S phase progression
when cells are in the resting phase. Transcriptional repression of
pRb is carried out by its interaction with the E2F family of
transcription factors. pRb also associates with several proteins
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involved in transcriptional repression such as histone deacetylases
HDAC1, HDACZ, and HDAC3 (52,53).

pRb in genomic stability

Genomic stability in a cell is maintained by accurate DNA
replication, segregation of chromosomes and high fidelity of DNA
repair {54). Inactivation of pRb leads to multiple genetic alterations
which inturn enables the cells to become susceptible to cancer.

pRb has an important role in chromosomal segregation. Therefore,
presence of functional RB1 gene is essential for proper segregation
of chromosomes during mitosis. pRb is known to interact with
two groups of proteins via interactions with mitosin, a structural
component of the kinetochore and Hec1, a conserved regulator
of multiple mitotic events (55). pRb is also known to physically
interact with topoisomerase II, which is involved in DNA replication
and chromosome segregation (56).

Role of pRb during cell differentiation

Function of pRb is known to be essential for the terminal
differentiation of many tissue types (38). pRb accumulates during
embryonic development and cell differentiation. pRb coordinates
proliferation and differentiation during terminal differentiation in
myogenesis, osteogenic differentiation, and adipogenesis (57).
pRb is required for terminal differentiation of cerebellar granule
cells, and keratinocytes (58). In vitro studies also have
demonstrated a role for pRb in terminal adipocyte differentiation
(59).

pRb in neural cell differentiation

pRb deficient mice embryos have abnormal neuronal
differentiation as displayed by decreased or absent expression of
a group of neuronal differentiation markers such as p75 NGFR,
all-tubulin, and Trk A in the trigeminal ganglia and dorsal root
ganglia. Primary cultures of neuronal cells from these regions of
Rb deficient mouse embryos show decreased outgrowth of axons
compared with similar cultures from Rb wild type mouse embryos.
The phenotype in the nervous system of Rb” embryos has been
almost fully characterized. Extensive ectopic cell cycle entry and
elevated apoptosis levels were apparent in both central (CNS)
and peripheral nervous system (PNS) of these mice by embryonic
day 12, thatis E12. During mouse embyo development neuronal
precursor cells normally exit from cell cycle and begin to
differentiate at the time Rb" CNS/PNS phenotypes were initiated
which suggested pRb might be required during neurogenesis
(60,61).

Role pRb in apoptosis

Rb null mice display various defects such as extensive apoptosis.
Wild type pRb acts as a survival factor as is evident from the
massive cell death observed in pRb deficient mice in tissues where
pRb is nommally highly expressed (62). Because pRb is activated
on exit of the cell cycle during differentiation, it is thought that
the function of pRb is to protect differentiating cells from apoptosis.

Several studies provide evidence that pRb may also regulate
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apoptosis negatively (63-66). Previous reports from colon tumors,
cultured colon tumor cell lines, breast cancer, bladder cancer,
NF2 tumors and melanoma indicated tumor specific increase in
the level of pRb and the phosphorylated form of pRb (39,40,67-
70). A positive role for pRb in malignant transformation is also
implied in human colon cancer, breast and bladder cancer
(67,68,71), perhaps due its antiapoptotic function.

Regulation of pRb functions by phosphorylation

The function of pRb is regulated by phosphorylation and
dephosphorylation of serine/threonine residues. There are sixteen
serine/threonine residues in pRb and the phosphorylations of these
serine/threonine residues determine the function of pRb during
cell cycle (40,41). pRb switches between hypophosphorylated
and hyperphosphorylated forms during cell cycle (40,72,73). Cell
cycle dependant phosphorylation of pRb in vivo is well establihsed
(47,72,73). pRb is shown to be phosphorylated in vitro by cyclin
dependant kinases (CDKs) (41,72,73). Response to various growth
signals cyclin-cdk complexes phosphorylate pRb during cell cycle.

The antiapoptotic function of pRb seems to oppose its tumor
suppressor activity. The anti proliferative and anti apoptotic
activities of pRb may represent complementary functions that
work in concert to maintain the proliferation rate of cells within
limits. As a survival strategy, some cancer cells may exploit this
dual role of pRb by phosphorylating sites that regulate tumor
suppression but voiding phosphorylation of Ser 567 and
consequent apoptotic stimulus (74).

Inactivation of tumor suppressor function of pRb

pRbis known to interact with more than 100 protein partners by
its multiple protein binding sites and form complexes to perform
the normal function (75). Disassembly of these complexes is
mediated by four known mechanisms: (a) mutation of the RB1
gene (60); (b) physical binding with viral oncoproteins, such as
E1A (76); (c) phosphorylation of pRb (47) and (d) degradation
of pRb (77) (Figure 4).
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RB1 gene alterations in human tumors

Mutation of the RB1 gene was first observed in inherited
retinoblastomas, it is known that loss of Rb function contributes
to a wide array of human cancers (47,78). Mutations at the RB1
gene locus lead to absence or altered form of its protein, which
has lost its ability to suppress the uncontrolled cell proliferation.
Loss of function of pRb eventually leads to tumor development
(47). RB1 gene has been implicated in a variety of human tumors
like retinoblastomas, oesteosarcomas, small cell lung cancers,
breast cancers, bladder cancers etc. (62,78).

Alterations in RB1 gene expression have been reported in many
human tumor types including lung cancer, osteosarcoma,
leukemia, prostate cancer and bladder cancer (20,46). Increased
expression of RB1 mRNA and protein has been reported for many
human colon tumor tissues and human colorectal cancer cell
lines, breast cancers, brain tumors, VS tumors and bladder cancers
(39,40,66,68,71,79-81). Altered phosphorylation of pRb by
deregulation of CDK/cyclins and their inhibitors are involved in
tumorigenesis.

Alteration of RB1 gene and pRb pathway in brain
tumors

The human brain tumors arise from various cell types (Figure 5).
RB1 tumor suppressor gene has been studied in several human
intracranial tumors including gliomas, meningiomas, pituitary
adenomas, vestibular schwannomas etc. There are reports that
loss of pRb expression in pituitary tumors and glioblastomas (82)
are associated with promoter hyper methylation.
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Abnormality in pRb function is reported in 30% of human gliomas
(21). Aberrations at the RB1 gene locus were found in high-grade
gliomas (83). Allelic loss at the RB1 gene and its altered expression
has been reported in high-grade astrocytomas (21). Loss of pRb
is reported in the progression of pituitary adenoma to carcinoma
(84). It was also demonstrated that RB1 gene inactivation and
loss of its protein, pRb, might be associated with glial tumor
progression (85). LOH of RB1 gene was detected in 44% of
malignant peripheral nerve sheath tumors (86).

Overexpression of either cyclin D, cdk4/cdk6 in glial tumors may
stimulate sustained cdk mediated phosphorylation of pRb (87-
89). This may be critical for inactivation of pRb mediated growth
suppression and may play an important role in brain tumor
progression (67,69,70).

Possible role of RB1 gene in human brain tumors

Recent results showed LOH at the RB1 gene locus in high-grade
gliomas. In addition, the level of RB1 mRNA was increased in
these tumors. Notably, 50% and higher percentage of the total
pRb was present as hyperphosphorylated form in almost all the
gliomas. Among the meningiomas, approximately 50% of the
tumors had increased level of RB1 mRNA and in the remaining
tumors the levels were equal to that of the control WI38 cell line.
Meningiomas also had increased percentage of
hyperphosphorylated pRb compared to the WI38 control cell line.
However, in approximately half of the meningiomas studied less
than 50% of total pRb was present as hyperphosphorylated form

(79) (Figure 6).
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Recent studies showed increased percentage of
hyperphosphorylated form of pRb in human brain tumor tissues
compared to the control WI38 cell line and it is conceivable that
the hyperphosphorylated pRb could control the proliferation of
various brain tumor cells to a varying degree (79). The percentage
of hyperphosphorylated form of pRb varied among the brain
tumor types, which is suggestive of deregulated pRb in these tumor
types. It is conceivable that the pRb could play a role in apoptosis
in tumors where less than 50% pRb exist in hyperphosphorylated
form. Therefore, the variable ratio between the
hypophosphorylated form and the hyperphosphorylated form of
pRb found in various brain tumor tissues could determine the
variable growth potentials (fast or slow) of these tumors (79,90).
Gliomas are known to have a higher proliferative potential
compared to meningiomas. Presence of higher percentage of
hyperphosphorylated form of pRb in almost all gliomas compared
to meningiomas could provide an accelerated proliferative
potential for these tumors. In addition, presence of increased
percentage of hyperphosphorylated form of pRb could also aid
in tumor cell survival perhaps due to its anti-apoptotic functions
(79) (Figure 7). Thus, the increased percentage of
hyperphosphorylated form of pRb found in gliomas could aid in
aggressive proliferation of these tumors and could also aid in
tumor metastasis (Figure 8). Presence of lower percentage of
total pRb as hyperphosphorylated form in meningiomas could
induce apoptosis (due to increased percentage of
hypophosphorylated pRb), which in turn could lead to slow
proliferative potential of meningiomas (Figure 7). Overall, the
existence of increased percentage of total pRb as
hyperphosphorylated form as compared to the control WI38 cell
line is predictive of its role in keeping the tumor cells in
dedifferentiated state (91). In addition, it appears that the ratio
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between the hypophosphorylated form and hyperphosphorylated
form of pRb could predict the tumor cell growth, survival,
aggressiveness, expansion and possibly metastasis (Figure 8).
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Several studies have shown that many human solid tumors,
including brain tumors have small population of cells, which
have the characteristics of adult stem cells (92-94). These ‘cancer
stem cells’ have the capacity of self-renewal (Figure 9A). Several
reports suggest that these cancer stem cells could be involved in
tumorigenic pathways such as initiation, progression and
metastasis (92-94).

Presence of cancer stem cells has been reported for brain tumors
(95). A recent study by Ligon and coworkers showed that Olig2,
a CNS-restricted-transcription factor is known to regulate the
growth of normal CNS stem cells as well as brain tumor stem
cells (96). Olig2 has been shown to directly suppress transcription
of p21, which is a kinase inhibitor. p21 is known to inhibit
phosphorylation of pRb (78,97,98). It has been shown that
gliomas, particularly the malignant gliomas had increased
percentage of hyperphosphorylated form of pRb (79) and this
could be due to inactivation of p21 by Olig2 in these high-grade
tumors (96) (Figure 9B).

Conclusion

The number of brain tumor cases appears to be on the rise in
Indian population, which could partially be due to improved
screening and diagnostic protocols. It could also be due to
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increased use of pestiside and change in life style such as change
in food habbits and increased consumption of processed food.
Inactivation of RB1 gene due to gross structural changes that is
reported for brain tumors from Western population does not appear
to be true for Indian population (79). In addition, it is intriguing
that prevalence of retinoblastoma tumors appears to be rare in
Indian population compared to that reported for Western
population. Data from the brain tumors tissues obtained from
Indian population indicate changes such as large deletions, point
mutations at the RB1 gene locus accompanied by absence of
kpRb is not frequent in these tumors. Conversely, RB1 gene
deregulation in Indian population appears to be due to changes
such as LOH at the intron 1 region, deregulated expression of its
mRNA and pRb protein and also due to change in the
phosphorylation status of pRb (79). Therefore, we need to develop
customized chemotherapeutic protocol as the available drugs and
treatment protocols developed for Western population might be
less effective or even inappropriate to treat brain tumor patients
in India.
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