Emerging role of WNK1 in pathologic central nervous system signaling

Evan M. Krueger,1 Gurwattan S. Miranpuri2 and Daniel K. Resnick2

1A. T. Still University – Kirksville College of Medicine, Kirksville, MO, USA, 2Department of Neurosurgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA

ABSTRACT

WNK1 (with no lysine [K] or WNK family member), is a widely expressed serine/threonine protein kinase. The role of this kinase was first described in the kidney where it dynamically controls ion channels that regulate changes in cell volume. WNK1, through intermediates oxidative-stress-responsive kinase-1 (OSR1) and STE20/SPS1-related proline/alanine-rich kinase (SPAK), phosphorylates the inwardly directed Na+:K+:Cl- cotransporter 1 (NKCC1) and the outwardly directed K-Cl- cotransporter 2 (KCC2), activating and deactivating these channels, respectively. WNK1, NKCC1 and KCC2 are also expressed in the central nervous system (CNS). Growing evidence implicates WNK1 playing a critical role in pathologic nervous system signaling where changes in intracellular ion concentration in response to γ-aminobutyric-acid (GABA) can activate otherwise silent pathways. This review will focus on current research about WNK1, its downstream effectors and role in GABA signaling. Future perspectives include investigating WNK1 expression in the CNS after spinal cord injury (SCI), where altered neuronal signaling could underlie pathological states such as neuropathic pain (NP).

KEYWORDS: NKCC1, KCC2, GABA, Neuropathic Pain, Spinal Cord Injury

Corresponding Author: Daniel K. Resnick, M.D., M.S., E-mail: resnick@neurosurgery.wisc.edu

doi: 10.5214/ans.0972.7531.1118212
amino acid sequence homology in their N-terminal catalytic domain (96%) and C-terminal regulatory domain (67%).

SPAK and OSR1 phosphorylate three residues on the NKCC1 channel. Hyperosmotic stress increases NKCC1 phosphorylation and K⁺ uptake by this channel. WNK1-induced phosphorylation of OSR1 activates this kinase to phosphorylate its NKCC1 substrates in HeLa cells in vitro. Hela cells injected with WNK7 siRNA exhibit reduced NKCC1 activity. MDCKII cells overexpressing WNK1 show increased chloride permeability, in vivo. WNK4 phosphorylates SPAK at sites homologous to those phosphorylated by WNK1. In Xenopus laevis oocytes, coexpression of both WNK4 and SPAK increases NKCC1 channel activation and desensitizes the channel to osmotic conditions. Coexpression of WNK4 and SPAK results in downregulation of KCC2, regardless of osmotic environmental conditions. Expression of WNK3 phosphorylates NKCC1 regardless of the osmotic state of the environment. WNK3 increases Cl⁻ influx via NKCC1 and decreases Cl⁻ efflux via the KCC2 channel.

Thus WNK1, WNK3 and WNK4 behave like volume sensitive kinases that control SLC12 family members. However WNK3 can regulate the NKCC1 and KCC2 transporters alone, where as WNK1/4 require OSR1 and SPAK coexpression; suggesting a separate mechanism for the different kinases. Perhaps WNK3 works by inhibiting phosphatases and thus increasing the phosphorylation state of SCL12 family channels; a different mechanism could exist for WNK1/4: they phosphorylate OSR1 and SPAK which go onto phosphorylate NKCC1 and KCC2.

The WNK family and its biological cascade play an important role in the nervous system. WNK1 knockdown C17.2 cells show altered morphology, slower motility and reduced invasive ability; suggesting WNK1’s role in proliferation, migration and differentiation in neural development. SPAK and OSR1 are expressed in adult neurons of the spinal cord, DRG and brain. SPAK or OSR1 knockdown mice show about a 50% reduction of spinal cord NKCC1 channel activity, and knockdown of both kinases is additive. WNK3 is highly expressed in the nervous system and appears to be important in neuronal development: absent in mice on postnatal day 10, but becoming highly expressed by postnatal day 21. This might suggest a role of WNK3 in switching from normal GABA excitation in prenatal life, to GABA inhibition in adulthood. Post-mortem analysis of human brain specimens shows schizophrenics have increased WNK3 expression in the dorsolateral prefrontal cortex, an area known to have altered synchrony in diseased patients. Additionally, perhaps the WNK family’s ability to dynamically regulate Cl⁻ channels plays a role in the circadian variation of [Cl⁻] and GABA transmission that occurs in the suprachiasmatic nucleus that controls sleep wake cycles. Hereditary sensory and autonomic neuropathy Type 2 (HSAN2) is a recessive disorder associated with loss of sensitivity. A mutated alternatively spliced exon of the WNK1 gene that selectively occurs in nervous tissues called HSN2 is involved in HSAN2. Specific isoforms of WNK1 have been characterized to be organ specific. HSN2 is found primarily in the spinal cord, but is also present in the DRG and sciatic nerve of adult mice. Within the spinal cord, HSN2 is more predominant in the dorsal roots compared to the ventral roots. It is also highly expressed in the laminae II and III, dorsolateral funiculus and lateral funiculus that contain ascending sensory fibers. Interestingly, twenty-five human carriers of the defective exon were shown to have lower warm and cold detection thresholds. It was hypothesized that one truncated copy of the WNK1/HSN2 gene results in an increase in membrane excitability lowering detection threshold; however in homozygous HSN2 isoform carriers that have HSAN2, the increased excitability may lead to excitotoxicity leading to decreased sensation. Pain Perception

Modulation and/or modification of the nervous system can lead to hyperalgesia (noxious stimuli eliciting a greater than normal pain response) or allodynia (stimuli that normally do not produce pain begin to do so). Recent pain theories propose lose of inhibition (disinhibition) as being crucial for the development of chronic pain. There are two types of afferent fibers in the spinal cord: Aβ-fibers that perceive tactile sensations, and Aδ- and C-fibers involved in nociception. A presynaptic link exists between these two fibers that contains a GABA-ergic interneuron. Under normal conditions mechanically stimulated Aβ fibers, acting via the GABA interneuron, will cause primary afferent depolarization (PAD) of the nociceptive terminals; thus shunting pain perception via a presynaptic inhibition mechanism. Following injury, an increased afferent barrage from the Aδ- and C-fibers converges onto the GABA-ergic spinal interneurons that mediate the presynaptic link between mechano and nociceptive receptors. Thus when the Aδ-fibers are now stimulated, the increased excitability of the interneuron produces a much more intense PAD capable of producing spike activity. This results in antidromically conducted dorsal root reflexes (DRR) and produce secondary hyperalgesia or allodynia.

Role of NKCC1 and KCC2 in Pain

DRG NKCC1 KO mice show increased thermal pain thresholds. Mutant cells hyperpolarize and WT cells depolarize to identical stimuli, and mutant cells lack the GABA R-mediated anion outward flux current. Blocking NKCC1 channels lowers [Cl⁻] accumulation after vagal motorneuron axonotomies. Elevations in [Cl⁻] after rat sciatic nerve axonotomies is attributable to phosphorylation of the NKCC1 channel. Additionally, axonotomies increase DRG NKCC1 phosphorylation. NKCC1 KO mice have reduced Aδ-fiber mediated touch evoked hyperalgesia following intradermal capsaicin injections, a known method to induce allodynia. Intracolonic injection of capsaicin increases dorsal spinal NKCC1 phosphorylation within 10 minutes of injection and membrane mobilization 90-180 minutes after instillation. Total NKCC1 mRNA levels do not change. Intrathecal (IT) injections of BU have antinociceptive properties for hindpaw formalin injection models, a known method to induce acute pain. IT injections of BU also attenuates intracolonic capsaicin injection induced referred abdominal allodynia after its establishment. Recently, it was shown that IT BU injections reduces dorsal horn and nociceptive specific signaling after intraplantar capsaicin injections.
NKCC1 and KCC2 in the role of development and maintenance of cSCI induced NP. Inflammatory mediators induce phosphorylation of DRG NKCC1 channels and increases [Cl−]i, within one hour, and increases NKCC1 expression and decreases KCC2 channel expression within three hours, *in vitro*.65

Hemisection spinal cord injury (SCI) decreases KCC2 expression in the dorsal horn that correlates with twelve-week mechanical allodynia. This type of injury also results in a positive shift in GABA, that changes prior inhibitory post-synaptic potentials to long lasting excitatory post-synaptic potentials in laminae I dorsal horn neurons.10 cSCI rats show a 84% reduction in ventral horn KCC2 channel expression 7-45 days after injury, and continuously decreased expression into 4-5 month post-injury chronic phases.66 Spinal cord KCC2 protein levels are decreased in rats with painful diabetic neuropathy.67 IT injections of anti-sense KCC2 oligodeoxyribonucleotides or a KCC2 channel blocker decreases mechanical and thermal nociceptive thresholds in injured and uninjured animals.68,69 Rat hindpaw formalin injection models show reduced KCC2 immuno-reactivity in lamina I and II of L5, although total KCC2 mRNA is unchanged.70 Mice given subcutaneous injections of formalin show reduced KCC2 channel expression in the medullary horn that is associated with pain behaviors.69 Peripheral inflammation induced by hindpaw injections of complete Freund’s adjuvant reduces dorsal horn KCC2 channel expression and thermal nociceptive thresholds.71 Cuff-induced injuries of the rat sciatic nerve results in reduced expression of the KCC2 channel, and reverses GABA response polarity to excitatory in lamina I neurons, *in vitro*.68 In rat vagal motoneurons, *in vivo* axonotomies result in decreased expression of KCC2 mRNA. Subsequent accumulation of [Cl−]i is directly attributable to new GABA induced excitation.75

Role of GABA in Pain

GABA receptors are found in primary afferent terminals and interneurons in laminae I-IV in the spinal cord dorsal horn, which is the main site of Ai- and C-fiber afferent termination and nociceptive signaling. GABA-ergic interneurons are important in spinal nociceptive processing and nociceptive attenuation.74,75 Elevation of [Cl−]i can lead to GABA-ergic hypersensitivity by reversing both ECl− and the normal inhibitory action of GABA.24 Lamina I GABA-ergic interneurons become more excitable with depolarizing membrane potentials, larger spike heights, increased firing frequencies and increased incidence of spontaneous plateau potentials after SCI.76 The GABA antagonist bicuculline alleviates formalin induced tactile allodynia in rats with painful diabetic neuropathy.67 Administration of complete Freund’s adjuvant into the rat hindpaw reverses spinal GABA signaling. Muscimol (a GABA, receptor agonist) increases and gabazine (a GABA, antagonist) decreases nociceptive thresholds in naive rats, where as after inflammation muscimol decreases and gabazine increases nociceptive thresholds.71 In vitro scraping injuries to hypotalamalic neurons changes their electrophysiological properties: depolarizing chloride reversal potentials that result in GABA induced excitation.76

Future Perspectives

In summary, WNK1 phosphorylates SPAK and OSR1, which go onto phosphorylate NKCC1 and KCC2, activating and deactivating these channels, respectively. Subsequent accumulation of [Cl−]i could reverse GABA polarity in dorsal horn spinal interneurons. Altered WNK1 expression could be important in post-injury neuronal signaling.

SCI is a devastating79 and costly injury with an estimated 12,000 new cases reported within the US each year.80 Anywhere between 25.5-96.2% of people develop chronic pain after their injury.81-83 Neuropathic pain (NP) can occur from altered processing in the central nervous system in the absence of peripheral nerve damage.84 PAD and presynaptic inhibition could be modified by changes in WNK1 activity and/or expression, and subsequent changes in NKCC1 and KCC2 channel activity after cSCI to alter nociceptive sensory processing in the spinal cord. Altering these channels would change [Cl−]i, and result in a larger potential shift when GABA receptor channels open. This could lead to PAD changing to DRR and/or increased GABA activity of interneurons mediating PAD; ultimately leading to heightened excitability that would translate into hyperalgesia and allodynia (Fig. 1). Future electrophysiological studies could help understand post-injury changes in spinal circuitry.

The hyperosmotic induced WNK1 and NKCC1 activation, and KCC2 deactivation previously reported in the renal system,37,39,44 could be similar to the inflammatory response elicited in the nervous system after injury. Vasodilatation and subsequent invasion from neutrophils, monocytes, T and B lymphocytes; and cytokine secretion from astrocytes, microglial cells, endothelial cells and leukocytes could possibly increase extra-cellular osmolarity and activate WNK1, which has previously been described as a volume sensitive kinase.17,37,39,44 NKCC1 and KCC2 expression is increased and decreased, respectively, at a CNS injury center.85 NKCC1 phosphorylation stimulates peripheral nerve regrowth after axonotomy.85 Perhaps during injury GABA induced depolarizations, because of altered chloride homeostasis, are induced in an attempt to revert neurons back to a state of developmental flexibility needed for sprouting and re-targeting.86 As a consequence, NP develops.

SLC12 channel phosphorylation precedes changed channel expression in nervous system injury models.85 And although NKCC1 phosphorylation has been shown to increase membrane mobilization,86 an exact role of WNK1 and increased SLC12 channel expression has not been described. Future studies directed at studying the consequences of altered WNK1 expression in the CNS will be important in understanding the various roles of this kinase.

Abbreviations

WNK1: with no lysine (K) kinase I; SPAK: STE20/SPS1-related proline/alanine-rich kinase; OSR1: oxidative stress-responsive kinase-1; NKCC1: Na+-K+-Cl−-cotransporter 1; KCC2: K+-Cl−-cotransporter 2; GABA: γ-aminobutyric-acid; SCI: spinal cord injury; NP: neuropathic pain; DRG: dorsal root ganglion; BU: bumetanide; cSCI: contusion spinal cord injury; [Cl−]i: intracellular chloride; CI−,put: chloride current in/out; ECl−: chloride equilibrium potential; Vm: membrane potential; KO: knock-out; WT: wild-type; CNS: central nervous system; Pseudohypaldosteronism type II: PHAII; HSAN2: hereditary sensory and autonomic neuropathy type 2; PAD: primary afferent depolarization; DRR: dorsal root reflexes; IT: intrathecal; TH: thermal hyperalgesia; GABA: GABA induced current.

Acknowledgments

EMK would like to thank members of the Dr. Daniel K. Resnick and Dr. Gurwattan
Fig. 1: Hypothetical role of WNK1 in pathologic spinal cord signaling. In normal spinal cord signaling tactile information is processed by Aβ-fibers, and a presynaptically linked GABA-ergic interneuron causes PAD of nociceptive pathways. However, an unknown mechanism such as injury will a. cause phosphorylation of WNK1 which, b. phosphorylates OSR1 and SPAK which, c. phosphorylates the NKCC1 and KCC2 channels, activating and deactivating these channels, respectively. This leads to [Cl]i > ECl, d. reversed GABA signaling, and e. activation of otherwise silent nociceptive pathways and antidromically conducted DRR, leading to hyperalgesia or allodynia.

References


30. Lenert LS, Lee BH, Min X, et al. Properties of NKCC1 and its role in other fami-0


32. Vitari AC, Thastrup J, Ralston, et al. Functional interactions of the SPAK/OSR1 kinases with their upstream activa-0


34. Vitari AC, Thastrup J, Ralston, et al. Functional interactions of the SPAK/OSR1 kinases with their upstream activa-0


42. Curtis DR and Lodge D. The depolarisation of feline ventral horn group Ia spinal affer-0


47. Loggia ML, Bushnell MC, Tetreault M, et al. Carriers of recessive WNK1/H52S muta-0


55. Laird JMA, Garcia-Nicas E, Delpire E, et al. Presynaptic inhibition and spinal pain processing in mice: a possible role of the NKCC1 cation-chloride co-transporter in